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Abstract-In this paper we propose the use of a lattice based
second order infinite impulse response (IIR) notch filter
with a simplified adaptation algorithm for removal of
power line frequency from ECG signals. The performance
of this filter is better as compared to a second order infinite
impulse response (IIR) notch filter for a real time ECG
recording systems where the frequency of line varies over a
narrow range about 50 Hz.
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I.  INTRODUCTION

A major problem in the recording of electrocardiogram
(ECG’s) is that the measured signal is corrupted by 50
Hz power line interference [1]. The traditional approach
for this interference removal is to use a digital notch
filter characterized by a unit gain at all frequencies
except at notch frequency where the gain is almost zero.
A number of FIR and IIR filters have been proposed for
this purpose [3]. But for a real time ECG recording the
power line frequency varies over a narrow range of
frequencies about the base frequency of 50 Hz. The
specifications for example are 50 Hz + 3 %. In the
traditional approach IIR notch filter with a narrow 3-dB
rejection bandwidth is preferred to faithfully separate the
sinusoidal and broadband components. But the response
of such a filter is not suitable when frequency has
changed, so an adaptive notch filter is required for this
purpose. It is so far known that IIR adaptive notch filter
realization performs better than finite impulse response
(FIR) counterparts as regards the number of coefficients
and computational complexity. In implementation of IIR
adaptive notch filters, a number of structures and
adaptation algorithms have been proposed.

 Most of the proposed algorithms are based on gradient
descent methods that require at least two filter structures,
one of them for generation of gradient signals used in
adaptation algorithms. This adds to hardware
complexity. Further, since the gradient filter also needs
to be tuned during adaptation, it adds to computation
complexity also.

In this paper we use a second–order IIR adaptive notch
filter that uses a simple adaptation algorithm that does
not require a gradient signal-generating filter [2]. Instead

the adaptation signal is generated by the same structure
as one of its internal states. This structure therefore
reduces both hardware and computation complexities as
compared to gradient descent based algorithms. Lattice
structure realization is used as it has several advantages
over direct form structures [5]. For example a lattice
structure realization requires a minimum number of
multipliers and allows independent tuning of the notch
frequency and attenuation bandwidth.

      II. SECOND ORDER ADAPTIVE NOTCH FILTER

The adaptive filter in consideration is characterized by a
second order transfer function H (z) [2]

   H (z)  =  1+α   1- 2β(k)z -1+ z –2             (1)
      2      1- β(k)(1+α)z -1+ z -2

The coefficients β(k) and α are related to the notch
frequency w 0 and 3-dB attenuation bandwidth Ω by

         β(k) = cos (w 0)
                                                      (2)
         α = 1 - tan (Ω/2)
                1 + tan (Ω/2)

In tracking the sinusoid of unknown frequency w s, a
simplified adaptation algorithm is used and is given by

β(k + 1) = β(k) + µ y(k) x(k)        (3)

where µ is the stepsize adaptation constant, y(k) is the
output of the notch filter and x(k) is an adaptation signal.

A number of different structures can be used to
implement Eq. (1) but due to the advantages of lattice
structure over other structures a lattice structure is used.
Fig (1) shows a lattice structure realization of the
adaptive notch filter H (z).
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Fig.1 Lattice Structure realization

The adaptation signal x (k) is generated by the same
filter structure. The transfer function from the input u (k)
to x (k), F (z) is

 F (z) =    (1 + α)(1 - β(k))        z –1                              (4 )
                  2    1-β(k)(1 + α)z -1 + α z –2

                    III. NOTCH FILTERING

Given the input ECG signal u (k), the sampling
frequency f s Hz, sinusoidal frequency f d Hz and notch
bandwidth BW Hz, the design proceeds as follows

(i) Calculate w 0 = 2π(f d /f s), Ω = 2π(BW/f s)

(ii) Using Eq. (2), calculate the filter coefficients α and
β(0).

(iii) Choose arbitrary initial conditions y(-1) and y(-2),
the output is calculated using Eq. (1)

y(k) = y(k-1)β(k)(1 + α) - α y(k – 2) +
 1 + α   [u (k) - 2β(k) u (k-1) + u (k-2)]
     2
(iv) The coefficient β(k) is updated by using the relation
               β(k + 1) = β(k) + µ y(k) x(k)
(v) The adaptation signal x (k) is obtained using Eq. (4)

     x(k) = β(k) (1 + α) x(k-1) - α x(k-2) +
               (1 + α )(1 - β(k) u (k-1)
                            2
For non-adaptive IIR filtering the coefficient β(k) is
constant and thus steps (iv) and (v) are redundant. To

test the above algorithm an ideal ECG signal was added
with power line interference where the frequency of the
line varied in a narrow range. The various ECG signals
tested were:

(1) ECG signal with 48.5 Hz noise added
(2) ECG signal with 49 Hz noise added
(3) ECG signal with 49.5 Hz noise added
(4) ECG signal with 50 Hz noise added
(5) ECG signal with 50.5 Hz noise added
(6) ECG signal with 51 Hz noise added

In order to compare the adaptive filtering process with
the non adaptive IIR filtering process, the mean square
error defined in eq. (5) was calculated

             n=n0+N
E =  1       Σ     y(n) – s(n) 2              (5)
       N    n=n0+1

where N is the size of the window and n0 is the starting
time. The value of n0 was chosen as 400 so that the effect
of transients could be neglected.

                                                      IV. RESULTS

The outputs of the IIR notch filter, for the ECG signals
with power line interference of varying frequency
(signals 1-6), without using adaptation algorithm and
with adaptation algorithm are shown in figs. 2-7. The IIR
notch filter practically fails to eliminate the line
interference at frequencies other than 50 Hz, whereas
adaptive IIR notch filter gives a nearly noise free output.

The Mean square error calculated by using the Eq. (5)
was plotted for different bandwidths for both the second
order IIR and the second order adaptive IIR filters.

                   Fig.8. Mean square error vs Bandwidth for a second order IIR notch
filter at d           filter at different frequencies .
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In fig. (8) the series 1,2,3,4,5,6 indicate the mse of the
notch filter at frequencies 48.5 Hz, 49 Hz, 49.5 Hz, 50
Hz, 50.5 Hz and 51 Hz respectively. From fig. (8) the
mse for IIR notch filter is minimum at 50 Hz but
becomes significant as the line wanders away from 50
Hz. Even if the bandwidth is increased to1 Hz the error
is significant.

Fig.9 Mean square error vs BW for second order adaptive IIR notch
filter at different frequencies

In fig. (9) the series 1,2,3,4,5,6 indicate the mse of the
notch filter at frequencies 48.5 Hz, 49 Hz, 49.5 Hz, 50
Hz, 50.5 Hz and 51 Hz respectively. From fig. (9), the
mean square error for an adaptive IIR filter is quite small
and remains nearly constant even as the line frequency
changes from 50 Hz. Only at 51 Hz the mean square
error becomes significant as the bandwidth is increased
above 1Hz.(uppermost curve).

Fig. (10) Comparison of adaptive and non-adaptive IIR notch filters at
frequencies of 48.5 Hz and 51 Hz.

In fig. (10), the series s1 and s3 indicate the mean square
error for non-adaptive IIR notch filter while series s2 and
s4 indicate the mse for adaptive IIR notch filter at
frequencies 51 Hz and 48.5 Hz resp. Thus at a frequency
of 48.5 Hz and 51 Hz i.e. the upper and lower limits of
line frequency variation, the response of an adaptive IIR

notch filter is much better as compared to IIR filter used
without adaptation. Thus for power line interference
removal, though an adaptive filter increases the
computational load, it is to be preferred as compared to a
non-adaptive filter because it can adjust to small changes
in the frequency of line. In addition it can be easily
implemented in hardware using a lattice structure.

                       V. CONCLUSION

This paper identifies the problem of line interference in
real time ECG measuring systems where the frequency
of line is not stable. A suitable remedy for the above
problem in the form of second order adaptive IIR notch
filter is proposed. Experimental results show that this
filter gives a better performance as compared to non-
adaptive second order IIR notch filter when the
frequency of line varies.
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(a) ECG signal with 48.5 Hz Interference

(b) IIR Filtering without adaptation algorithm
     y(-1) = 0,y(-2)=0, and BW = 0.5 Hz

(c) Adaptive IIR Filtering
y(-1) = 0,  y(-2) =0, BW =0.5 Hz

Fig. 2. Comparison of the two IIR notch filters at  line frequency =
48.5 Hz. The first 400 samples are neglected and initial conditions
are assumed to be zero.
(f d = 400 , f s= 50 Hz)

 (a) ECG signal with 49 Hz interference

    (b) IIR filtering without adaptation algorithm
                       y(-1) = 0,y(-2) =0, BW = 0.5 Hz

    (c) Adaptive IIR Filtering
            y(-1) = 0,  y(-2) =0, BW =0.5 Hz

Fig. 3. Comparison of the two IIR notch filters at line frequency = 49
Hz. The first 400 samples are neglected and initial conditions assumed
to be zero. (f d  = 400 , f s= 50 Hz)
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(a) ECG signal with 49.5 Hz Interference

( b ) IIR Filtering without adaptation algorithm
       y(-1) = 0,  y(-2) =0, BW =0.5 Hz

(c) Adaptive IIR Filtering
     y(-1) = 0,  y(-2) =0, BW =0.5 Hz

Fig. 4. Comparison of the two IIR notch filters  at line frequency = 49.5
Hz. The first 400 samples are neglected and  initial conditions are
assumed to be zero. (f d = 400 , f  s= 50 Hz).

(a) ECG signal with 50 Hz Interference

( b ) IIR Filtering without adaptation algorithm
   y(-1) = 0,  y(-2) =0, BW =0.5 Hz

(c) Adaptive IIR Filtering
 y(-1) = 0,  y(-2) =0, BW =0.5 Hz

Fig. 5. Comparison of the two IIR notch filters at  line frequency = 50
Hz. The first 400 samples are neglected and the initial conditions are
assumed to be zero. (f d = 400 , f s= 50 Hz)
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(a) ECG signal with 50.5 Hz Interference

(b) IIR filtering without adaptation algorithm
        y(-1) = 0,  y(-2) =0, BW =0.5 Hz

(c) Adaptive IIR Filtering
y(-1) = 0,  y(-2) =0, BW =0.5 Hz

Fig. 6. Comparison of the two IIR notch filters at line frequency = 50.5
Hz. The first 400 samples are neglected and initial conditions are
assumed to be zero. (f d = 400 , f s= 50 Hz)

(a) ECG signal with 51 Hz Interference

(b) IIR filtering without adaptation algorithm
           y(-1) = 0,  y(-2) =0, BW =0.5 Hz

(c) Adaptive IIR Filtering
   y(-1) = 0,  y(-2) =0, BW =0.5 Hz

Fig. 7. Comparison of the two IIR notch filters at line frequency = 51
Hz. The first 400 samples are neglected and initial conditions are
assumed to be zero. (f d = 400 , f s= 50 Hz)
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